Consider an autonomous, homogeneous 2D linear system with constant coefficients

$$
\dot{X}(t)=A X(t), \quad A \in \mathbb{R}^{2 \times 2}
$$

The system defines a vector field, associating a direction and magnitude for every point in \mathbb{R}^{2}
Ex. $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$

$$
x(t)=c_{1} e^{2 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Ex. } A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+2 y \\
2 x+y
\end{array}\right] \\
& \lambda_{1}=-1 \quad V_{1}=\left[\begin{array}{l}
-1 \\
1
\end{array}\right] \\
& \lambda_{2}=3 \quad V_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad=0 \\
& x(t)=c_{1} e^{-t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right] \\
& X(t)=c_{1} e^{-t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2}\left(t e^{-t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{-t}\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right]\right)_{-2}^{0}
\end{aligned}
$$

Equilibrium solutions
A point $\bar{X} \in \mathbb{R}^{2}$ is an equilibrium solution if the constant function $\bar{X}(t)=\bar{X}$ is a solution to the system.

Thus $\frac{d \bar{X}}{d t}=A \bar{X} \quad \Rightarrow \quad A \bar{X}=0 \Rightarrow \bar{X}=0$ is an equilibrium.
Also, if A is invertible, then $\bar{X}=0$ is the unique equilibrium.
If all eigenvalues of A have negative real part, then $\lim _{t \rightarrow \infty} x(t)=0$ for all solutions $X(t)$, so the origin is asymptotically stable.
The origin is stable if all eigenvalues have nonpositive real part.
The origin is unstable if at least one eigenvalue has positive real part.

Real Eigenvalues: Nodes
Def. The origin of $\dot{X}=A X, A \in \mathbb{R}^{2 \times 2}$, is a node if both eigenvalues λ_{1}, λ_{2} have the same sign and are real.

Def. A node is proper if $\lambda_{1}=\lambda_{2}$ and there are two linearly independent eigenvectors. It is improper otherwise.

Ex.

Stable improper node

Stable improper node

stable proper node

Real eigenvalue: Saddles
Def. The origin is a saddle pt if $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and have opposite signs. WLOG, say $\lambda_{1}<0<\lambda_{2}$.
Note: Since $\lambda_{1} \neq \lambda_{2}$, we have two linearly ind eigenvectors V_{1}, V_{2}.
Then $X(t)=c_{1} e^{\lambda_{1} t} V_{1}+c_{2} e^{\lambda_{2} t} V_{2}$.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \quad \begin{array}{lll}
\lambda_{1}=-1 & V_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
\lambda_{2}=3 & V_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array}
$$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Complex eigenvalues
Def. If $\lambda_{1}=a+b i, \lambda_{2}=a-b i, a, b \in \mathbb{R}$, then the origin is a spiral (or focus) if $a \neq 0$, and a center if $a=0$.
If $a<0$, then it is an asymptotically stable spiral.
If $a>0$, then it is an unstable spiral.
A center is (neutrally) stable (but not asymptotically stable)

Stability diagram
Let $A \in \mathbb{R}^{2 \times 2}, \quad \tau=\operatorname{Tr}(A), \quad \delta=\operatorname{det}(A)$
Then $\lambda^{2}-\tau \lambda+\delta$ is the characteristic polynomial of A.
$\Rightarrow \lambda_{1,2}=\frac{\tau \pm \sqrt{\tau^{2}-4 \delta}}{2}$, where $y=\tau^{2}-4 \delta$ is the discriminant.
If $Y \geq 0$, eigenselus are real.
If $\tau>0$ and $\delta>0$, then $\lambda_{1}>0, \lambda_{2}>0$, so unstable node If $\delta<0$, then $\lambda_{1} \lambda_{2}<0$, so saddle pt. If $\tau<0$ and $\delta<0$, then $\lambda_{1}<0, \lambda_{2}<0$, so stable rode.
If $1<0$, eigenvalues are complex
If $\tau>0$, then $\operatorname{Re}\left(\lambda_{1,2}\right)>0$, so unstable spiral.
If $\tau=0$, then $\operatorname{Re}\left(\lambda_{1,2}\right)=0$, so neutral center.
If $\tau<0$, then $\operatorname{Re}\left(\lambda_{1,2}\right)<0$, so stable spiral.

Stability diagram

